

1 | White Paper

SECURING EDGE NODES

 SECURING EDGE NODES
 Internet of Things Design Concepts

SECURING EDGE NODES
Internet of Things Concept Design

Envision Secure

Embedded

2 | White Paper

SECURING EDGE NODES

TABLE OF CONTENTS

Introduction.. 2

Firmware vs. Embedded HLOS.. 3

Microcontrollers vs. CPU Based Systems.................................... 3

Microcontrollers and JTAG... 4

Additional Attack Vectors... 4

Automated Software Upgrades... 4

Double Security Mechanism... 5

Unique Device ID.. 6

X.509 Certificate Management and ID.. 6

Secure Boot... 7

INTRODUCTION

Security is the number one issue and complexity for billions of embedded Internet of Things

(IoT) devices entering the market by 2020. Increased consumer awareness and market

demand have encouraged manufacturers to produce secure products that are resilient to

both known threats and new attack profiles that target device security.

Device side Edge Node security is inherently dependent on the internal hardware and

software building blocks available to the application. If any of the core components of the

device are not part of a secure system architecture they are set to fail and invite malicious

activity by system entry, and unauthorized access.

This whitepaper explores the precautionary steps necessary to assist manufacturers to

secure connected offerings at the device level.

Recommended Precursor: Certificate Management for Embedded Systems

https://realtimelogic.com/blog/2013/10/Certificate-Management-for-Embedded-Systems

3 | White Paper

SECURING EDGE NODES

Firmware vs. Embedded HLOS

Use of a HLOS (High-Level Operating System) within an
embedded application may be born out of necessity, whether
based on reasons of legacy, familiarity, or requirement. From a
security standpoint they also increase the risk element for a
device, given the native ability to allow dynamic modification of
the system architecture at runtime. One of the key benefits for
using a HLOS is the ability to easily add or modify programs.
This is consequently a double edged sword when considering
security because it is also the same vehicle used to open an
array of attack vectors and vulnerabilities to the system. Any
attack which gains access to the HLOS gains the ability to add
and-or start a system process that is capable of controlling the
hardware or installing a backdoor.

The September 2014 Shellshock exploit is a global-scale
example where a CGI scripting manipulation was used to
execute arbitrary commands via the widely used Unix Bash
Shell, thereby rendering many HLOS architectures exposed to
full system access.

Firmware by contrast is based on a fixed monolithic system
structure of software that may enable control, monitoring, and
data manipulation for a given system architecture, and is
traditionally stored in non-volatile memory such as ROM, or
Flash memory. The combination of Application Code, RTOS
(Real Time Operating System), and Middleware utilities are
assembled into a binary component, that constitute a low-level
program control for the device.

Solutions designed in firmware are provided with inherent
access limitation to attack vulnerabilities, because the
complexity involved in a complete firmware replacement is
much greater than adding a process to a HLOS.

Developers have access to many connectivity options with

capacity to off-load traditional device centric architectures

(popularized through mid-2000), that would otherwise

implement a HLOS structure. Client-Server IoT Protocols now

provide SSL|TLS secure transports for server-side offloading of

the device. The benefit not only provides a safer environment

but can also reduce BOM costs related to hardware

processing, memory, and power consumption and is trending

as today's most practical and affordable alternative for

connected Edge Node products.

Microcontrollers vs. CPU Based Systems

Systems that include a CPU with external memory such as

[ROM | Flash] and-or for random access memory, make it

possible for an attacker to eavesdrop

on the Computer BUS and copy the Flash Memory content,

thus enabling an attacker to inspect the system code.

Microcontroller based systems, where no external memory is

present, can be made virtually tamper proof since there is no

accessible entry to the firmware stored inside the

microcontroller.

Memory intensive software solutions that carry large footprints

such as OpenSSL and HLOS (Linux) by example are not well

suited for small microcontroller based devices without adding

large amounts of external memory. Furthermore, when used in

these types of minimalistic environments they may yield poor

results given the available system resources in processing

power consumption, desired boot, and secure authentication

timings.

4 | White Paper

SECURING EDGE NODES

Microcontrollers and JTAG

The 'Go To' interface for microcontroller device electronics is
the JTAG interface for development, debugging, testing and
uploading firmware during the manufacturing process. The
standard allows for access to flash memory so that the device
can receive field upgrades and additional services. While
incredibly useful, the JTAG interface also leaves a gaping
security hole that can be easily be exploited by hackers. Open
access to flash memory, proprietary algorithms and other
sensitive areas, enables the ability to extract keys, codes, data
and processes without physical detection. For this reason it is
important to disable the JTAG interface during the
manufacturing process. How to disable the JTAG depends on
the type of microcontroller used as various manufacturers may
provide different options or recommended methods for
disabling the JTAG. In most circumstances, particularly on the
low-end of microcontrollers, burning the port fuse is the most
practical solution. Depending on the sophistication of the chip
simply blowing the fuse may not be the only or best method
available. High-end chipsets may enable JTAG port
configuration options to include setting modes of operation,
while other solutions that tend to be less secure recommend
disabling JTAG by using registers, or setting the port value to a
particular pin. It is recommended to select a microcontroller
where the JTAG fuse can be physically destroyed and that you
research the available options for any select microcontroller to
prevent physical JTAG hacking attempts.

Additional Attack Vectors

Microcontroller based systems, where the JTAG is physically
destroyed is certainly one of the more secure ways to render a
device nearly tamper proof from local access, however all
external ports used by the device remain open to attack. Ports
such as USB, Ethernet, and wireless access such as
Bluetooth are all vulnerable to local and remote exploits.
Attacks may probe for various software bugs such as buffer
overflows by sending specially crafted packets to the device
via the open ports creating the ability to inject software to take
control of the device. To avoid these types of circumstances it
is important to include secure automated firmware upgrade
logic as part of the originating design. If and when,
vulnerabilities are exposed, a patch may be applied via the
secure firmware upgrade logic; thereby providing a course of
activation and deployment to all affected devices.

An Edge Mode that resides within a private network and is
designed to act as a network client connecting out (via
router), to an online cloud server is much more secure than a
device that functions as a server itself. Protocols such as
SMQ, MQTT, and HTTP client, are more secure than a dual
role client/server protocol such as CoAP, given the
requirement that the device also acts as a server. Device
participation in a client role only eliminates direct probing since
there is no arbitrary data listening mechanism available to
exploit. Client based attacks are therefore limited to "man in
the middle" schemes which occur during connection, which are
rendered impossible if communications are protected by TLS
and

whereby the establishment of the TLS connection is based on
trusted certificates.

Automated Software Upgrades

It's critical that IoT devices are able to be maintained and
updated automatically since firmware may contain
vulnerabilities such as buffer overflows that must be patched.
The firmware update process can be automated by allowing
the device to connect with a cloud server to receive
replacement firmware. The following figure illustrates the
upgrade process for any single device, but any number of
devices may be updated in the same manner.

The device connects to a secure server via a TLS session,
where the server's certificate is validated during the
handshake process. A secure connection is established only if
the device trusts the server's certificate. Once the initial
handshake process is completed the firmware is then
downloaded and the firmware's signature is verified on the
device side. A double security mechanism is required in order
to properly secure the complete upgrade process.

5 | White Paper

SECURING EDGE NODES

Double Security Mechanism

The device connects to a secure cloud server and initiates a
secure TLS handshake. In this process the cloud server is
deemed trusted if 1) The server's certificate is trusted by the
device, and 2) If the server's name (the domain name the
device used to connect) matches the name found in the
server's certificate. The secure download begins only after the
device is able to confirm the above, thus preventing man in the
middle attacks.

After downloading the new firmware, the signature attached to
the firmware is verified by the device. The firmware is deemed
trusted if the firmware signature is valid. This extra security
check is needed since an attacker may have compromised
(hacked) the online server and installed an alternate firmware
payload. An attacker will not be able to sign the firmware with a
trusted signature, thus the extra security measure implemented
in the device will detect (reveal) that the online server has been
compromised. If the firmware's signature does not match the
expected signature the device will abort the loading process.

Digital signatures use asymmetric cryptography. Asymmetric
key algorithms use two different keys in pairs-- a combination
of a private key and a public key. The private key is known only
to the computer signing the firmware, while the public key is
stored in the initial and subsequent firmware or in the device's
secure boot. There are two types of asymmetric cryptography
in use by device authentication: 1) RSA and 2) Elliptic Curve
Cryptography (ECC), where ECC is a preferred asymmetric
cryptography for resource constrained devices due to its much
smaller key sizes for the same level of security. A 224 bit ECC
key is equally as strong as a 2048 bit RSA key.

The firmware cannot be directly signed using the private key
since the size of the firmware is too big to be used by
asymmetric cryptography.

Limitations:

 The size of the signed data cannot be larger than the
asymmetric key size. For example, a 2048 bit RSA key
cannot encrypt more than 2037 bits of data and a 256 bit
Elliptic Curve Cryptography (ECC) key cannot sign more
than 256 bits of data.

 The larger the key size, the slower the asymmetric
cryptographic operations will be, so it is not practical to
use a key large enough to sign firmware.

For this reason, the firmware is not directly signed by using
asymmetric cryptography, but instead the firmware's fingerprint
is signed. The fingerprint is calculated by using a hashing
algorithm such as SHA256. Older algorithms such as MD5 and
SHA1 are no longer considered secure because of the
relatively large probability of creating a hash collision.

The following figure illustrates the complete signing and
verification process, where the private computer signing the
firmware is shown in the left pane and the firmware verification
process performed in the device is shown in the right pane.

The private computer with the private key calculates a hash on
the firmware and signs the hash. The signature (signed hash)
is attached to the firmware and the signed firmware is then
uploaded to the cloud server responsible for firmware
upgrades. When the device downloads the firmware from the
secure cloud server, a hash is computed as the firmware data
trickles in. The device then verifies that the signature of the
computed hash matches the received signature (the signature
attached to the firmware). The firmware is trusted if the two
signatures match.

6 | White Paper

SECURING EDGE NODES

The firmware signing process is typically performed on a host
computer such as Windows or Linux when creating a new
release or distribution. Any cryptographic library may be used
during this process. The following illustration demonstrates a
C program running on Windows and is making use of
RayCrypto, (SharkSSL SSL TLS Crypto Engine).

Private keys may be loaded dynamically from a file system or
embedded directly in the C program by converting the key from
PEM format to the SharkSSL using the command line tool
SharkSslParseKey.

Private Key Embedded in the C program

The verification process must be performed by an asymmetric

cryptographic library that is sufficiently small for memory

constrained devices. The RayCrypto engine included in

SharkSSL is a good choice since SharkSSL is the smallest

embedded TLS stack. Also, the asymmetric engine in

SharkSSL includes assembler optimized code for common

architectures thus providing very fast verification even on slow

devices.

See the SharkSSL documentation for more information on the

cryptographic signature and verify functions used in the

example.

Unique Device ID

A unique device ID can be used as a method to strengthen

overall security. A unique device ID must be protected from

tampering and copying. If stored in the device's internal

memory the JTAG fuse should be physically destroyed during

manufacturing.

A device ID may be used by IoT protocols as a pre-registered

ID, where cloud services allow connections from known keys. It

may also be used by a hardened-- online firmware cloud server

solution for mutual authentication. In [Figure 3], we illustrated

how a device authenticates a server by using X.509

certificates. The server may also be designed to authenticate

clients attempting to connect to the firmware upgrade service

by verifying the device ID.

A device ID may be a number that is pre-registered in the

server. Pre-registered IDs are also good for making sure that

only known devices are able to connect. For example, a

company leases out production to a manufacturer that

produces more devices than reported and re-sells the products

under a different brand. A cloud server accepting only known

devices will make sure no third party clones can connect to the

online service.

X.509 Certificate Management and ID

A very strong device ID and authentication mechanism is to
install a unique X.509 certificate for each device. The cloud
server solution can be configured to accept only TLS
connections from clients with a trusted X.509 certificates. This
is referred to as mutual TLS authentication, where the client
authenticates the server and the server authenticates the client
(device). Using a unique X.509 certificate for each device
requires a Certificate Authority (CA) Manager to sign the
certificates; with what is known as a (CA root certificate). See
our Certificate Management Tool for an introduction to CA
Management.

https://realtimelogic.com/products/raycrypto/
https://realtimelogic.com/products/sharkssl/
https://realtimelogic.com/ba/doc/en/C/shark/md_md_Certificate_Management.html#SharkSslParseKey
https://realtimelogic.com/ba/doc/en/C/shark/group__ECDSA.html
https://realtimelogic.com/blog/2014/05/How-to-act-as-a-Certificate-Authority-the-Easy-Way
https://goo.gl/7q8XLS

7 | White Paper

SECURING EDGE NODES

Secure Boot

Once the device is powered, the authenticity and integrity of
the device software should be verified using an exchange of
cryptographically generated digital signatures. The foundation
of trust and validation process is very similar to how we use
personal signatures added to legally binding documents to
authorize and agree to everyday transactions. The device will
verify a cryptographic generated digital signature that is signed
by the originating authorized entity to the software image to
ensure proper authorization occurs before any software is
loaded on the device.

Secure Boot provides a full set of functions that will enable
developers to verify firmware upgrades and/or loadable
modules. Secure boot can greatly enhance the security of an
embedded device by cryptographically verifying that any new
software and firmware is authentically (produced by the
manufacturer) and has not been unknowingly compromised or
maliciously modified.

In general, there are two Secure Boot design methods for an
embedded device by provisioning for use with a single or dual
firmware upgrade. Each method holds relative pros and cons
to the solution and the best selection for a particular application
is mainly dependent on the available device memory and total
firmware size.

Single Firmware Upgrade: Secure boot is firmware

installed during the manufacturing process with software
specifically designed for performing a software upgrade.
The secure boot firmware contains at a minimum:

 Firmware Upgrade Logic

 Public Certificate

 TLS including Crypto Ciphers

 TCP/IP stack and related Drivers

Pro
Secure boot can be designed to require as little as
40Kb ROM / 15Kb RAM.

Con

Device is not able to operate during the firmware
upgrade process.

Failure will render the device inoperable until the
secure boot is able to reconnect and load new
firmware.

Dual Firmware Upgrade: The dual firmware upgrade requires

the system to store two firmware versions on the device.
Secure Boot is integrated into the firmware enabling the
upgrade logic to use the TLS and TCP/IP stacks that reside in
firmware. The linker produces two versions of the firmware
that will execute in lower and upper memory regions
respectively. The upgrade logic selects the correct firmware
version to load from the online cloud server. The design
requires that the initial startup code is able to be read by a
persistent data region. It then uses decision criteria logic to
know where to jump, based on a given region, i.e. (instruction
pointer positioning).

Pro

Device is fully operational during the firmware
upgrade process.

Device will continue to use the most current
available firmware in the event of a failure.

Con
Complete firmware payload can be no more than
50% of the available Flash Memory.

It is desirable for devices in field operation to receive hot
patches and firmware updates. Manufactures need a method
of safe device authentication, which does not consume
bandwidth or impair functional aspects. The Secure Boot
process offers an intelligent and elegant way to handle
firmware upgrades to the Edge Node, while conserving
bandwidth, and intermittent connectivity of an embedded
device without compromising safety.

Contact: Real Time Logic for information and assistance with

secure firmware upgrades and securing Edge Node devices in
distributed network architectures:

Real Time Logic LLC
Dana Point, California, USA
Phone: 949-388-1314

General Information: info@realtimelogic.com
Website: https://realtimelogic.com

mailto:info@realtimelogic.com
https://realtimelogic.com/

