

The Barracuda App Server, including tutorials and browser based development tools, comes pre-installed on a Linux

powered LinkIt Smart 7688. The device, by default, starts as a Wi-Fi Access Point, and you may connect and access this
device using any Wi-Fi enabled computer.

Step 1 — Power up your board using a micro-USB cable

Plug one end of a Micro USB cable into the power connector of the LinkIt Smart 7688 Barracuda App Server board
and the other end of the cable to a USB power source, such as your computer, or a USB power adapter. Make sure you

connect the cable to the USB Power connector, not the USB Host connector near the MPU reset button. The Power LED
(Green) will light up first, followed by the Wi-Fi LED (Orange) which will blink once. Then, after about 4 to 5 seconds, the

Wi-Fi LED will light up to indicate the bootloader has initialized.

Then the boot up process begins, which takes about 30 seconds. Next, the Wi-Fi LED turns off, which means the system is
ready to accept a Wi-Fi connection. The figure below shows how the Wi-Fi LED status matches the system state.

Step 2 — Connect your computer to the Barracuda App Server Access Point (AP)

Open the Wi-Fi connection utility on your computer

and connect to the Access Point named
Barracuda App Server.

You may use any type of computer including your

phone and tablet, however, the computer should
preferably have an external keyboard.

Note that some Android phones refuse to connect

to networks that are not connected to the Internet.
The Barracuda App Server Wi-Fi network, when

operating as an Access Point, acts as a connection

island and is not connected to the internet.

Step 3 — Access the Barracuda App Server's tutorials

In your browser, access http://192.168.100.1

You should see the page as shown to the right.

Note that you may not be able to connect the

browser immediately after connecting to the AP.
Give the device a few seconds and try again if it

fails.

You may alternatively navigate to

http://barracuda.local if your computer has

multicast Domain Name (mDNS) support. In

Windows 7, you’ll need to install the Bonjour print
service because mDNS is not supported. This helps

your computer discover the board's IP address
within the local domain. For Windows 8 and later,

Mac OS X, and Linux, mDNS is supported and you
can use barracuda.local without additional

software.

Follow the tutorials preferably from top to bottom

as shown in the screenshot to the right.

Note: information specific to the LinkIt Smart has

a yellow background.

https://support.apple.com/kb/DL999?locale=en_US
https://support.apple.com/kb/DL999?locale=en_US

Development — Using the included web based LSP development environment

The Integrated Development Environment

(IDE) provides a complete browser based
development environment for LSP. With the

IDE, you can create, edit, start, and stop
LSP applications. Each active application

can be managed using the LSP IDE.

Create and start working on a new

LSP application as follows:

1. Click the INTEGRATED IDE button in

the left pane, and click OPEN
LSPAPPMGR.

2. Click the New Application Tab, select
"Home" for file system, and click

Browse.

3. Right click the top folder, create a new

folder, and double click the folder to

select it.

4. Click Submit to create a new

application, and submit on the next
page to use the default settings.

5. Click Start to start the new application.

6. Click the Edit button, which brings up
the web based code editor.

7. Double click on the pre-generated
index.lsp file and start working on your

first LSP page.

Development — Using an external editor

The LinkIt Smart's Linux file system can be mounted/mapped as a network drive. You may create and edit files directly on

the device by using your preferred text editor as soon as you map a drive to the device.

The Barracuda App Server includes a WebDAV server, which enables mapping/mounting the LinkIt Smart device from your

computer.

Most computers support WebDAV including Mac, Linux, and Windows. The following screenshot shows how to map a
Windows drive to the pre-configured LSP application "myapp":

The Linkit Smart device is pre-configured with the two following WebDAV URLs:

http://192.168.100.1/fs/ Access to root of the Linux file system

http://192.168.100.1/myapp/fs/ Access to /home/mako/myapp/

The second URL is to a pre-configured LSP application available at the URL http://192.168.100.1/myapp/. You may mount
this drive and use any text editor on your computer to create files and sub-directories on the Linkit Smart in the directory

/home/mako/myapp/. As an example, creating the file index.lsp in this directory makes the file accessible via your browser
using the URL: http://192.168.100.1/myapp/

Note that the Barracuda App Server runs as the Linux user "root". Be careful when mounting the device using the first URL

above, which provides access to the root folder. You may brick the device should you delete or modify system files via the

WebDAV mount. In addition, note that some WebDAV clients, including the one in Windows, starts traversing into sub
directories on its own. This may temporarily freeze the server when WebDAV is attempting to access resources that are

not designed to be opened remotely such as the Linux /proc/ directory.

Development — Internet of Things (IoT) Tutorial

You may run the IoT demo/tutorial if your Barracuda App Server development kit comes with an ESP8266 Wi-Fi device.

Start the demo as follows:

1. Click the INTERNET OF THINGS button in the tutorial's left pane followed by clicking the OPEN SMQ LED WEB
INTERFACE button to bring up the SMQ LED demo's web page. Alternatively, navigate directly to the page by

using the following URL: http://192.168.100.1/smq/
2. Plug one end of a Micro USB cable into the power connector of the ESP8266 and the other end of the cable to a

USB power source.

3. The ESP8266 connects to the "Barracuda App Server" access point and registers with the SMQ broker that is part
of the tutorials bundle. After 5 - 8 seconds, the device should show up in the SMQ LED demo's web page.

The two figures to the right show the

SMQ LED demo's web page before and

after powering on the ESP8266.

You may click the "Builtin LED" on/off
button in the web interface to toggle

the blue Built-In LED on the ESP8266
on and off.

You may optionally control the two other LEDs by connecting a LED between D7 and ground, and between D8 and ground.

The following figure shows the ESP8266 hooked up to a breadboard with two LEDs connected.

When done — Power off device

1. Click WEB SHELL in the left pane to bring

up the browser based terminal console.
2. Enter the command poweroff and press

the Enter key.
3. Wait a few seconds.

4. Remove the power supply.

WARNING:

The Web Shell provides a fully functional terminal

in the browser. You may use any Linux command

in the browser based terminal. Be careful if you are

new to Linux, you may end up bricking the device.

Barracuda App Server Tutorials Components:

You may inspect the following data via the WEB SHELL by using standard Linux commands.

/bin/mako and /bin/mako.zip: The pre-compiled Barracuda App Server (mako) and its resource file (mako.zip) are stored
in the /bin/ directory.

/home/mako - Tutorials and configuration files:

certs - SSL certificates used by the tutorials are stored in this directory.

lspapps - All tutorials packaged as ZIP files are stored in this directory.
myapp - Directory for development using an external editor.

mako.conf - Instructs Barracuda App Server (Mako Server) to load all tutorials and SSL certificates.
LED.so - pre-compiled shared library for the Lua to C Code tutorial.

SSL Certificates:

EC.barracuda.local.[key|pem] - Elliptic Curve certificate used when the ESP8266 connects to the Barracuda App Server.
RSA.barracuda.local.[key|pem] - RSA certificate used when navigating to the domain name "barracuda.local".

RSA.MakoServer.[key|pem] - - RSA certificate used when navigating to the domain name "makoserver".

ESP8266 information — a low-cost Wi-Fi microchip with full TCP/IP stack and microcontroller capability.

The ESP8266 is pre-flashed with our SMQ LED demo, but instead of connecting to our online SMQ cluster demo, the pre-
flashed firmware is designed to connect to the access point "barracuda app server" and then to the domain name

"barracuda.local". The SMQ client connects to the SMQ broker integrated in the Barracuda App Server tutorials.

The screenshot to the left shows the printouts

from the ESP8266 when it boots up. You may
connect any terminal program to the USB

serial interface by powering the ESP8266 from
one of your computer's USB connectors. We

use putty and the ESP8266's USB-serial

connected on COM5. The serial speed must be
set to 115200.

Notice the TLS handshake messages in the

screenshot to the left. We use SharkSSL and

the secure version of SMQ called SharkMQ in
the firmware. The complete Elliptic Curve

Asymmetric TLS Handshake is surprisingly fast
considering that the code executes through

serial flash -- in other words, the code
executes in place (XiP) through the SPI

protocol. The ESP8266 board we are using has

an external SPI flash chip.

The reason we use an Elliptic Curve certificate
is to conserve RAM memory. The ESP8266 is

configured according to our Certificate

Management for IoT tutorial.

You may easily flash your own SMQ client by installing the ESP8266 Arduino environment and by downloading the non

secure SMQ client for Arduino.

FreeRTOS, lwIP, SharkSSL, and SharkMQ based firmware

Note that the pre-flashed firmware is not using the Arduino environment, but is instead based on the FreeRTOS/lwIP SDK
for ESP8266. Contact Real Time Logic if you are interested in building your own FreeRTOS, lwIP, and SharkSSL based

firmware.

https://makoserver.net/blog/2014/12/Browser-to-Device-LED-Control-using-SimpleMQ
http://realtimelogic.com/IoT-LED-Cluster.html
http://www.putty.org/
https://realtimelogic.com/products/sharkssl/SharkMQ/
https://realtimelogic.com/ba/doc/en/C/shark/certmngmtIoT.html
https://realtimelogic.com/ba/doc/en/C/shark/certmngmtIoT.html
https://learn.sparkfun.com/tutorials/esp8266-thing-hookup-guide/installing-the-esp8266-arduino-addon
https://realtimelogic.com/products/simplemq/src/
https://github.com/SuperHouse/esp-open-rtos
https://github.com/SuperHouse/esp-open-rtos

