
12 AUGUST 2013 RTC MAGAZINE

editor’s report

12 AUGUST 2013 RTC MAGAZINE

W ith all the talk, and with all the
very real activity around the
Internet of Things, we hear of

numbers like 50 billion devices con-
nected to the Internet. The possible
applications are equally vast, targeting
such things as efficient building control,
industrial controls, military devices,
medical instruments, smart consumer
applications, transportation, environ-
mental monitoring and more. A large
portion of these 50 billion will be small
and dedicated to a limited number of
functions individually. Collectively,
however, they will span huge applica-
tions such as those mentioned and gen-
erate vast amounts of data that are com-
ing to be known as “Big Data.” That Big
Data eventually ends up on servers and
server farms in the Cloud where it can
be analyzed, combined and used for ap-

plications we may not have yet imagined.
What we are really getting with the

Internet of Things is the foundation of
what is coming to be known as Intelli-
gent Systems, where devices communi-
cate with each other mostly autonomously
and yet their functions serve human ends,
so human operators and consumers must
interact with these systems in some man-
ner. Since that interaction takes place
via the Internet, it is natural that they
are accessed through browsers. And in-
creasingly, Internet access for things and
people takes place with tablets and smart-
phones with their touch screen browsers.
So how does all this work with a universe
of small M2M devices that also must offer
human access?

It should come as no surprise that hu-
mans require more resources to interact
with devices and their applications than

machines do when they simply communi-
cate with one another. In other words, as
Wilfred Nilsen, CEO of Real Time Logic,
points out, to have meaningful interaction
with an application, you need more than
simple access to static pages, which is
what you get with a simple web server. A
simple web server, such as the well-known
Apache, is really just an HTTP protocol
stack that can access static, pre-defined
web pages. But web servers like Apache
can be enhanced with plug-ins and com-
ponents to add functionality.

Getting to Rich Human-Machine
Interfaces

Now of course most web sites pro-
vide more than just static pages, so there
is some underlying application that dy-
namically creates pages in response to
some user input. For embedded devices,
that underlying application would mostly
be some sort of control program that can
execute input commands and return data
about the status, etc. And of course, that
added functionality requires resources in
the form of processor power and memory.

Real Time Logic has concentrated
its efforts at providing small, compact
web servers for embedded devices with
its Barracuda line. What it calls its Bar-
racuda web server is actually more than
just a simple HTTP protocol stack as de-
scribed above, but it is aimed at requiring
minimal resources. The Barracuda web
server manages secure HTTP connections
for Machine-to-Machine (M2M) commu-
nication and Human-to-Machine (H2M)
interfaces. With C/C++ Server Pages
(CSP) included, it delivers dynamic web
applications, enabling live updating of
secure data by authenticated connection
(Figure 1).

The goal here is to provide access
and interaction with a minimum foot-
print. The Barracuda web server is about
200 Kbytes and requires around another
60 Kbytes. The software development kit
(SDK) provides a number of host tools
that compile and link CSP files. The tools
function similarly to a compiler or cross-
compiler, and convert the C Server Pages
files to either C or C++ code and to data
files. A linker combines all the data files
into one file, which is then embedded in
the application. The produced C/C++

by Tom Williams, Editor-in-Chief

The Internet of Things is growing rapidly. Managing the
billions of devices is a challenge that must meet the
expectations of users who have come to expect rich,
graphical human interfaces via web browsers.

M2M Meets Web
Applications Spawning
the Internet of Things

Human Interfaces for the Internet of Things

RTC MAGAZINE AUGUST 2013 13

editor’s report

RTC MAGAZINE AUGUST 2013 13

pages (LSPs) also interact with other com-
ponents and plug-ins such as database, I/O
and others.

According to Nilsen, the LSP pages
are Lua code that are accessed via the
HTTP engine, which will parse a request
and then access that page. For example, af-
ter receiving “turn engine on” it will parse
that page—the Lua code—on the fly and
execute it using the Lua virtual machine,
which interprets the page and can send a
command to the C application and return
the results to the user. The interfaces be-
tween the scripting code and the C side are
“Lua bindings” that enable the scripting
language to call functions in the C code.

approach by piggybacking on the exist-
ing infrastructure. Of course, that in turn
requires more resources on the embedded
device to enable a rich human interface
(Figure 2).

The Barracuda Application Server
is an embeddable C source code library
that builds on the web server to allow rich
graphical applications and human-ma-
chine interfaces for interaction with em-
bedded code. Since it is a C library, it can
be compiled and linked to an embedded C
application on the device. User interaction
takes place via pages created with the Lua
scripting language that interact with the C
application via its API. These Lua server

code is compiled using your standard C/
C++ (cross) compiler and the code is then
linked with the application.

There are, of course, other ways to
connect with embedded and networked
systems from an IT environment. For
example, there are dedicated programs
that communicate with embedded de-
vices using TCP/IP over the Internet be-
cause the developers may want interactive
graphically rich user interfaces (e.g., dials,
gauges, switches, displays) from a number
of small remote devices. The trouble here
is that such programs must be developed
from scratch and cannot take advantage
of many of the benefits of a web-based

Barracuda Application Server

Customer’s C or
C++ Application

Customer’s
LSP Application

Barracuda
Web Server Lua

Virtual
MachineThread

Pool
HTTP

Engine

Other Plugins
WebDAV, EventHandler,

Web Services, etc.

File System
(I/O Interface)

SQLite
Database

(Optional)

Lua Server Pages (LSP)
CSP Page

SharkSSL

Kernel
(OS/RTOS)

TCP/IP
Stack

Flash
Memory

(Optional)

File System
(Optional)

NetIo ZipIo DiskIo

Figure 2

The full Barracuda Application Server is a C source library that lets designers access their own proprietary C functions from
Lua code. It includes a rich selection of components and plug-ins.

Your C or C++
Application

CSP Page

RTOS

TCP/IP
Stack

Barracuda
Web Server

Thread
Pool

HTTP
Engine

Figure 1

The Barracuda Web Server is an industrial-strength, small embeddable web server engine that is optimized for compact,
deeply embedded devices.

14 AUGUST 2013 RTC MAGAZINE

editor’s report

14 AUGUST 2013 RTC MAGAZINE

but resource richer platform. On the one
side they don’t even need to be on the In-
ternet, but simply on a local Ethernet con-
nected to a port on the server device. That
server device then is connected to the In-
ternet where its pages can be accessed via
browsers from anywhere. Such a server
can connect to potentially hundreds or
thousands of small distributed devices.
There are many single board computers
on the market that can easily fulfill these
requirements.

How those devices with their em-
bedded applications are managed is then
entirely a matter of the application on the
server, which is accessed from a normal
browser. They can, for example, be con-
figured or updated collectively, be se-
lected from lists or by defined groups, or
even individually since all will have their
own IPv6 IP address. The approach of
using an intermediate server is also cost-
effective because only one platform needs
to run the full application server. Still, all
the options are available.

Real Time Logic
Monarch Beach, CA.
(949) 388-1314.
[www.realtimelogic.com]

tion of M2M communication among small
devices and a small, dedicated server with
the resources to run the Barracuda Appli-
cation Server.

The classic M2M design uses stan-
dard SOAP/XML web services. But a
SOAP stack with its XML parser is often
too big for a microcontroller. Even the
HTTP engine required by the web server
may be too big for a microcontroller’s
internal memory. A microcontroller can
communicate with a specialized online
web service by using secure communica-
tion managed with a TCP/IP stack and a
secure socket layer (SSL) client stack, in
this case Real Time Logic’s SharkSSL.
The added benefit of the approach used by
RTL is that the need for an HTTP proto-
col stack is eliminated because the device
connects to the specialized web service
by sending an initial HTTP header that is
then morphed into a persistent socket con-
nection as soon as the connection is estab-
lished with the server. Any data sent over
the persistent connection is encrypted by
the SSL stack (Figure 3).

With this approach, small microcon-
troller-based devices can communicate
with each other by simply exchanging data
once the connection is established. They
can also communicate with the applica-
tion server running on a small, low-cost

Using a scripting language like Lua
at this level, Nilsen notes, greatly simpli-
fies development. Of course, the underly-
ing application that will often sit on top of
an RTOS such as Green Hills Integrity or
Wind River’s VxWorks will be written in
C because of the need for detailed control
of the underlying hardware. Once that is
done, the use of a scripting language like
Lua lets developers work at a higher level
to make the application on the remote de-
vice easily available via a browser. And
browsers themselves are relatively simple,
so the device should be accessible from
PCs, Macs and Android or iOS-based tab-
lets and smartphones. That is what users
increasingly expect and demand.

Rich Interaction with Tiny
Devices

The options for developers, however,
should not be a choice between a simple
web interface on a resource-limited de-
vice or a rich interface on a larger, more
powerful device. There are, after all, these
millions of small devices that are collec-
tively doing all this important stuff. We
want rich interaction with them as well.
For interaction with a microcontroller
such as an Intel Atom or an ARM Cortex-
A4, you certainly can’t embed an applica-
tion server, but you can rely on a combina-

Connect https://company.com/path/2/web-service/
Web

Service

Application

SharkSSL

TCP/IP

Server

Persistent
connection

Figure 3

The RTL M2M approach requires minimum resources for a microcontroller to
exchange data with other devices and with an application server.

212x276_COTS_Journal_Ausst.indd 1 11.07.13 15:26

