
24 DECEMBER 2011 RTC MAGAZINE

Technology
connected

24 DECEMBER 2011 RTC MAGAZINE

Running a business used to be straight-
forward. You had development and
production and marketing and sales,

little of which had fundamentally changed
for decades or more. And then the Internet
happened. Suddenly everyone had to have
websites and online support and shopping
carts and Like buttons. Such a web pres-
ence has wormed its way ever deeper into
our expectations: increasingly, in our In-
ternet-of-things world, all devices must be
connected through a web application.

This creates a new challenge for design-
ers of small embedded systems. Not only is it
a new task, but smartphones have set the bar
ridiculously high when it comes to how so-
phisticated the application interface should
be. We have come to expect that small de-
vices can operate with color, depth and flair.

So whether it’s a meteorologist check-
ing on the weather in Antarctica or a seis-
mologist checking bore temperatures deep
in the earth, cryptic text or clunky graph-
ics won’t cut it. These folks don’t care how
little processing power your device has.
They simply want to see things the way
they’re used to seeing things.

Of course, a web application is noth-
ing more than software, and to a system
designer, C may just feel like the natural

way to approach this. But using C can
mean spending as much time on the user
interface as you spend on your core tech-
nology. There are much faster and easier
ways to get a high-performance web ap-
plication to market.

Some Web Basics
While a good web application should

provide a viewing experience that is natu-

ral to your user for the specific thing you’re
enabling them to do, in the end, it depends
on an exchange of information over the
Internet. That infrastructure can look de-
ceptively simple. It’s based on the Hyper-
Text Transfer Protocol (HTTP) and, as the
name suggests, everything being commu-
nicated back and forth between the user’s
browser and your device—which the
browser sees as a web server—is text. No

by Wilfred Nilsen, Real Time Logic

With ever more smart devices connecting to the web, even small
embedded devices must be able to serve up rich graphical presentations of
the data to satisfy user expectations. With time and space at a premium, a
scripting approach can be invaluable.

App Servers and Lua Scripting
Speed Rich Web Applications for
Small Devices

Embedded Web for Maintenance and Control

Request Page

Client
(Browser)

AJAX calls

Submit Form

Load page: GET/pagename

Response: dynamically created HTML

GET/pagename? param1=val1¶m2=val2

JSON response: { “key” : “val”, “data” :[1,2,4]}

Send data: POST / pagename?param=val

Response: dynamically created HTML

Smartphone,
Tablet,
Mac,
Windows

Web
Application

Server

Request object:
Parsed client data
Response object:
Client response buffer
and transaction
management

Figure 1

A web interface implements a series of requests, some explicit and some
implicit, achieved ultimately in text with the assistance of abstraction
technologies like AJAX and JSON.

26 DECEMBER 2011 RTC MAGAZINE

technology connected

26 DECEMBER 2011 RTC MAGAZINE

matter how complex the web experience,
it all boils down to strings.

In the early days of the web, people
wrote static web pages that consisted of Hy-
per Text Markup Language (HTML) text.
A browser would request a page at some
location, specified by a Uniform Resource
Locator (URL), and the server would find
that page and simply ship it back.

Then some clever people realized that,
rather than having a page fixed in some lo-
cation, you could dynamically create the
page using a more sophisticated database
of content along with the intelligence to
assemble the information into a page.

One way of doing that is to have the
server return a page with lots of JavaScript
code. The browser then executes the
JavaScript to render the page. Unfortunately,
different browsers work differently, and re-
lying entirely on JavaScript can create com-
patibility nightmares. The preferred alterna-
tive is to move much of the responsibility for
assembling the page back to the server.

Then some more clever people created
technologies like Asynchronous JavaScript
And XML (AJAX) for requesting data in
real time and JavaScript Object Notation
(JSON) for communicating data objects.
So what might seem like a single “Please
give me a page”/“OK, here’s the page you
requested” exchange, is typically much
more involved than that. Figure 1 illus-
trates a tiny portion of a typical exchange.

First the browser requests a page via a
URL. If the requested page is, for example, a

form, the server takes the data from the URL
and stitches together a single HTML text page
that the browser will render as a form. Now the
user tries to populate the form. But if the form
includes a pull-down list, for example, how
does that pull-down get populated, especially
if the contents depend on other form data?

This is where AJAX comes in. If the
user clicks the pull-down, the browser quickly
sends the server an AJAX request for the
data that should be in the list. Those AJAX
requests may use URL-encoded data to send
parameters back to the server. If the request
involves some high-level data object, then
the server may respond using JSON, where
data is structured and can be easily queried.
A number of AJAX requests may be required
before the form is ready to be submitted.

At some point, the user hits the “Sub-
mit” button, and the browser sends a new
request to the server; the server responds
with a new page. To the user, this looks
like “go to a page and get a form; fill in
the form; hit ‘Submit’.” But that appar-
ent simplicity hides a complex conversa-
tion between the browser and server. Any
small glitches or browser inconsistencies
can throw the whole thing off.

Writing the Application
With that background in mind, your

primary focus should be on your applica-
tion, which is what directs which pages
get sent when. When writing that applica-
tion, your choices for language are typi-
cally two: C or web scripting languages.

You will likely need to write some
portions of your application in C. Scripting
environments intentionally restrict scripts
from getting down to the hardware level. So
you will need to write some C routines—
similar to drivers—that will connect your
hardware to your web application. For ev-
erything else, you can choose a scripting
approach. So which is best, C or a scripting
language? To figure that out, we can break
the development work down into three
categories. The first is managing the data,
which is hopefully structured. The second
is the parsing of requests, and the third is
assembling responses.

With C, structures can’t be entered
into lightly: everything must be strictly
typed, and memory must be explicitly
reserved and released as needed. Parsing
isn’t rocket science, but it’s tedious and
extremely easy to get wrong, requiring in-
credible attention to every detail and mak-
ing maintenance difficult. Assembling the
page requires string concatenation on a
grand scale. Just the simple act of joining
two strings using C involves:

• �Determining the length of both strings
• �Reserving a spot of the appropriate

size for the result
• �Combining the two strings
• �Sending the result off
• �Releasing the memory used for the result

Much of this work has already been
done for you, however, in the form of ap-
plication servers and scripting environ-
ments. Because scripts are more free form
and are compiled just-in-time, a single line
of script can implement the entire string
concatenation. The lower-level details are
handled for you. Scripts also let you ac-
cess and manipulate data without worry-
ing about whether you’ve defined the right
data type or organization.

Figure 2 contrasts the impact of de-
veloping with C vs. scripting, referring
specifically to the Lua scripting language,
which we’ll discuss shortly. When you use
C, you start by getting something basic up
and running just to bring up the infrastruc-
ture. From then on, you’ve got this cycle
of stopping the server, making changes
(the most time-consuming portion), load-
ing the new code, and starting the server
again to see how things look. On the other
hand, with a scripting language, not only

Edit C Code

C or C++
development

cycle

Lua scripting
development

cycle

Edit source

Development Time Time

Refresh browser
Start server

Refresh
browser

Stop
server

Build

Download
to target

Figure 2

C code development takes much longer and is intrusive; Lua script
development can be as much as 30 times faster without bringing the system
down.

RTC MAGAZINE DECEMBER 2011 27

technology connected

RTC MAGAZINE DECEMBER 2011 27

is the coding time dramatically reduced,
but you can simply swap in the new scripts
without interrupting anything else.

Meanwhile, you can use an applica-
tion server to abstract the web server, giv-
ing you access to request and response
objects and their associated APIs. This
means your scripts really only deal with
the high-level application behavior and
data. The application server handles the
parsing and page-building details.

Bottom line: you can develop your web
application in as little as 1/30th the time by
using scripts and pre-built infrastructure
instead of custom C wherever possible.

Infrastructure and Scripting
Options

Older websites were originally imple-
mented using the Common Gateway Inter-
face (CGI). In truth, CGI is only an interface.
It’s generally cumbersome to manage and
requires a full-up OS like Linux that can load
external programs, meaning that deep em-
bedded monolithic systems cannot use CGI.
Basic web servers typically specify only func-
tion hooks; you must write the functions.

With CGI on standard web servers,
Perl scripting is very common, but most
embedded environments don’t support
Perl, meaning you have to revert to C to get
things done. All of this makes CGI an un-
attractive option. The most common mod-
ern alternative to CGI combines Linux as
an OS, Apache as a web server, MySQL as
a database, and PHP as a scripting environ-
ment—collectively called a LAMP setup.

LAMP setups work well in full-up
web server implementations. Unfortu-
nately, they demand far more processing
power—primarily CPU speed, but also
around 65 Mbyte of memory—than is
available in a small embedded device. The
application becomes unacceptably slow.

An example of this can be seen in one
specific network-attached storage (NAS)
device that provides a web interface. Even
though the processor runs at 900 MHz, its
PHP response is so bad that every page re-
quest is met by a rotating hourglass. In other
words, because they couldn’t speed up the in-
terface, they had to stuff an hourglass in there
as a “please wait” indicator to keep the user
from thinking that nothing is happening.

For small implementations like this,
you need a web server that has been de-

signed to operate efficiently and quickly
with modest processing power—as slowly
as 60 MHz—and little memory (1 Mbyte
or less of RAM and ROM). And, because
many of these devices may be located far
from the person trying to communicate
with the device—like our meteorologist
who, mercifully, isn’t in the Antarctic—
the system must be easy to manage re-
motely. One way to simplify management
is by compressing web pages together to
reduce their footprint; updates to the sys-
tem can then be made simply by swapping
zip files. An example of such a server is
the Barracuda Web/Application Server.

For efficient scripting in an embedded
environment, there’s a quiet, unassuming
scripting language called Lua. You may
not have heard of it, but, whether you’ve
used Adobe’s Lightbox program, played
World of Warcraft, or used any number of
other programs, you’ve used Lua. It’s spe-
cifically designed to operate on small plat-
forms, and yet handles things like garbage
collection, callbacks and type coercion
automatically and transparently. It’s spe-
cifically defined as an extensible language
and is implemented as a library that gets
compiled with your application.

As a result, an application server can
build on the language to add powerful ca-
pabilities. So the interplay between Lua
and the application server you choose can
also determine how powerful your environ-
ment will be. Running together, as shown
in Figure 3, the Barracuda Web/Applica-
tion Server and Lua deliver applications
that run as much as 20 times faster than
they would in a LAMP setup. The system
services, application server, SSL stack and

Lua virtual machine allow you to focus
on your application logic using high-level
data structures in Lua scripts. You use C
only for low-level access to your hardware,
something the scripts are forbidden to do.

In the end, what really matters is that
your users experience your system in a
way that meets the standards they’re al-
ready used to. Whether your users access
your device by desktop or smartphone,
what they see should look like a desktop or
smartphone application. They won’t be for-
giving just because you have a small device
acting as a server. After all, today’s smart-
phones appear to be small devices. The
typical user does not understand how much
compute power lies beneath the covers.

Even though you must give them the
look they want, you can’t spend a lot of
time building that look. The interface
should look as advanced as your system
technology, but you should be spending
most of your development time on your
system, not the interface. You can spend
months—even years—trying to code a
server in C. However, if you use a web
server that’s designed for an embedded
environment and then do your own cus-
tomization using Lua scripts wherever
possible, you can take that development
time down from months to days.

That gets you back to focusing on
your own technical innovations. And it
lets you present those innovations to your
customers in the best possible way.

Real Time Logic
Monarch Beach, CA.
(949) 388-1314.
[www.realtimelogic.com].

Lua Application 1

Application Bindings

C or C++
Application

Barracuda Web/
Application Server

SharkSSL
SSL/TLS

Lua
(Virtual Machine)

Lua Server Pages (LSP Bindings)

Lua Application 2

Low Level System Services
RTOS, TCP / IP Stack, Optional File I/O

Luca Application 3

Figure 3

Applications written as Lua scripts interact with the application server and
other blocks, including custom C routines. These save many months of
development time and can run up to 20 times faster than LAMP.

